Higher-order spectral analysis and weak asymptotic stability of convex processes
نویسندگان
چکیده
This paper deals with the asymptotic stability analysis of a discrete dynamical inclusion whose right-hand side is a convex process. We provide necessary and sufficient conditions for weak asymptotic stability, and obtain sharp estimates for the asymptotic null-controllability set. These estimates involve not only standard, but also higher-order spectral information on the convex process and its adjoint. © 2005 Elsevier Inc. All rights reserved.
منابع مشابه
Extension of Higher Order Derivatives of Lyapunov Functions in Stability Analysis of Nonlinear Systems
The Lyapunov stability method is the most popular and applicable stability analysis tool of nonlinear dynamic systems. However, there are some bottlenecks in the Lyapunov method, such as need for negative definiteness of the Lyapunov function derivative in the direction of the system’s solutions. In this paper, we develop a new theorem to dispense the need for negative definite-ness of Lyapunov...
متن کاملThe stability of the solution of an inverse spectral problem with a singularity
This paper deals with the singular Sturm-Liouville expressions $ ell y = -y''+q(x)y=lambda y $ on a finite interval, where the potential function $q$ is real and has a singularity inside the interval. Using the asymptotic estimates of a spectral fundamental system of solutions of Sturm-Liouville equation, the asymptotic form of the solution of the equation (0.1) and the ...
متن کاملOn Psi-conditional asymptotic stability of first order nonlinear matrix Lyapunov system
We provide necessary and sucient conditions for psi-conditional as-ymptotic stability of the solution of a linear matrix Lyapunov system and sucientconditions for psi -conditional asymptotic stability of the solution of a rst ordernon-linear matrix Lyapunov system X0 = A(t)X + XB(t) + F(t;X).
متن کاملLyapunov Functions and Duality for Convex Processes
The paper studies convex Lyapunov functions for differential and difference inclusions with right-hand sides given by convex processes, that is, by set-valued mappings the graphs of which are convex cones. Convex conjugacy between weak Lyapunov functions for such inclusions and Lyapunov functions for adjoint inclusions is established. Asymptotic stability concepts are compared and the existence...
متن کاملStudy on stability analysis of distributed order fractional differential equations with a new approach
The study of the stability of differential equations without its explicit solution is of particular importance. There are different definitions concerning the stability of the differential equations system, here we will use the definition of the concept of Lyapunov. In this paper, first we investigate stability analysis of distributed order fractional differential equations by using the asympto...
متن کامل